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Weak localization of polarized light in a medium composed of arbitrary uncorrelated particles is
considered. Saxon’s reciprocity relation for the single-scattering amplitude matrix is used to derive a
rigorous relation between the ladder-term and cyclical-term contributions to the Stokes reflection ma-
trix in the pure backscattering direction. By solving numerically Chandrasekhar’s vector radiative-
transfer equation to compute the ladder-term contribution, the copolarized and depolarized back-
scattering enhancement factors are calculated for Rayleigh scattering and spherical latex particles in
water. The computations for latex particles show good agreement with experimental data.

In recent years, considerable attention has been paid to
the problem of enhanced backscattering of light from ran-
dom media.! This enhanced backscattering is observed as
a well-defined narrow peak in the angular distribution of
the intensity of the scattered light at scattering angles
near 180°. A well-known result of the theory of multiple
scattering of scalar waves in discrete random media is
that in the pure backscattering direction, the contribution
of all the cyclical diagrams to the backscattered intensity
is identical to that of all the ladder diagrams of orders
n=2.2 Therefore, the backscattering coefficient y is
given by

y=r'+yt+yC=y'+29", (1)

where y' is the contribution of the first-order scattering,
y! is the contribution of all the ladder diagrams of orders
n=2, and y< is the contribution of all the cyclical dia-
grams. An important consequence of Eq. (1) is the so-
called “factor of two™:
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where { is the backscattering enhancement factor, defined
as the ratio of the total backscattered intensity and the in-
coherent background intensity in the pure backscattering
direction. The purpose of the present paper is to general-
ize Eq. (1) by taking into account the vector character of
light. Also, assuming that the contribution of all the
ladder diagrams can be found by solving the vector
radiative-transfer equation, we calculate the copolarized
and depolarized enhancement factors for several scatter-
ing models and compare these calculations with experi-
mental data.

Consider a plane-parallel medium composed of arbi-
trary uncorrelated particles. To describe light scattering
by a particle, we use a local right-handed Cartesian coor-
dinate system, which has its origin inside the particle and
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a fixed orientation identical to that of the laboratory refer-
ence frame attached to the medium. The direction of
light propagation is specified by a unit vector
i=(0,¢) =0x 4§, where 0 is the polar angle, ¢ is the az-
imuth angle, and 8 and ¢ are the corresponding unit vec-
tors. Assume that the concentration of the particles is low
and the particles may be considered independent scatter-
ers. Thus, each particle can be specified by a (2x2) am-
plitude scattering matrix F(fi’,i), which describes how 0
and ¢ components of a plane wave E(id), incident on the
particle in the direction fi, are transformed into 0 and ¢
components of the wave E'(#i’), scattered by the particle
in the far-field zone in the direction A">*
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An important property of the amplitude scattering matrix
is the reciprocity relation®

F(—d,—i")=0F"(@',d)Q, @

where g=diag(l, =1), and T denotes matrix transpose.
We emphasize here that the basis {0,¢} (instead of
{£,§,2}) is used throughout the paper to describe the in-
cident and scattered fields.

Let a plane wave Eo=(g::) be incident upon the upper
boundary of the medium in the direction fip. Denote by p°
the corresponding density (or coherency) matrix which is
defined by

p’=EE§T= )

EoEds anEa‘,l
EosEds EosEdy )’

where the asterisk denotes complex conjugation. Let p be
the density matrix of the light scattered by the medium in
the far-field region in the direction —fy. Transformation
of the elements of the matrix go into those of the matrix p
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is given by and
P ph 2aa* ab* —ac* ba*—ca* —bc*—ch*
P12 o —ab*+ac* 2ad* —bb* —cc* bd* —cd*
pu | F2(f0fo) | o 1, © | —pa*4ca* —bb*—cc*  2da*  db*—dc*
. o% ~bc*—cb* —bd*+cd* —db*+dc*  2dd*
(12)

where y(—fig,Ap) is the (4x4) Stokes reflection matrix
for the pure backscattering direction. Let us decompose
the matrices p and y(— o, i) as

;_)=Q'+BL+EC, . 7
r=r'+yt+yC, ®

where, as earlier, 1 denotes the contribution of the first-
order scattering, L denotes the contribution of all the
ladder diagrams of orders n > 2, and C denotes the contri-
bution of all the cyclical diagrams. The problem is to ex-
press the elements of the matrix ZC in those of the matrix
2~

Denote by (1,n) a “light path” formed by n= 2 arbi-
trary scattering centers, along which a wave travels, and
by (n,1) the time-reversed path, i.e., the path that is
formed by the same scatterers, but along which the wave
travels in the opposite direction. The waves that are scat-
tered by the chains (1,n) and (n,1) in the pure back-
scattering direction —fly have equal phases and will con-
structively interfere. Denote by E‘"" and E“" the am-
plitudes of the two scattered waves and by £('"’) and
P the corresponding (2x2) amplitude transformation
matrices such that E(" « p(tWE ang E@.1) o pDE,
The matrices P and P™") can be expressed in terms
of products of the amplitude scattering matrices of the in-
dividual particles that enter the chains (1,n) and (n,1).
Therefore, by using the single-scattering reciprocity rela-
tion, Eq. (4), one easily derives the reciprocity relation for
the matrices P ") and P 1),

L)(n.l)___g(g(l.n))TQ. 9)
Denote
g = ab
P = d}. (10)

The contribution of the chains (1,7) and (n,1) to the ma-
trix p* is given by

E(I.n)(E(I,n))*T+E(n.l)(E(n.l))*T

while the contribution to the matrix ;_)C is given by

E(l.n)(E(n.I))*T+ E(”'I)(E(“"))*T.

The corresponding contributions to the matrices ZL and
ZC are given, respectively, by

2aa* ab* —ac* ba*—ca* bb*+cc*
—ab*+ac* 2ad* be*+cb*  bd* —cd*
—ba*+ca* bc*+cb* 2da* db* —dc*
bb*+cc* —bd*+ed* —db*+dc*  2dd*

an

[see Eq. (10)]. By comparing the matrices (11) and (12),
we have

)’ILI 71’“2 711‘3 - 73Lz

J’le 72L2 - 74‘1 75‘4
y<= Lo (13)
- 73L [ 7 Y I £ X ] Y34

This relation is the desired generalization to the vector
case of the scalar identity y(=y~.
For macroscopically isotropic media, the matrices l',

7", and 7€ have the form

i 0 0 74

0 273 0

0 72733 0

v 0 0 vy

Therefore, for linearly polarized incident light with the
density matrix components p?, =1, p?z =p§| =p92 =0, we
may define the copolarized and depolarized backscatter-
ing enhancement factors as

a=Ch+rh+y O/ Ghi+vh)

=(rh+2vf)/ G+ k), (14)
Co=(rh+rh+ v/ i+ vh)
=(rh+vh—rR)/(rh+7h) . a1s)

One sees that for the copolarized component, Eq. (14) is
identical to Eq. (2) for scalar waves. At the same time,
Eq. (15) for the depolarized component is quite different.
As is well known,® the Bethe-Salpeter equation under
the ladder approximation of uncorrelated discrete scatter-
ers results in the common radiative transfer equation.
Therefore, assuming that the matrices l'l and ZL can be
found by solving Chandrasekhar’s’ vector radiative-trans-
fer equation, we used Eqs. (14) and (15) to compute the

TABLE 1. Computed copolarized and depolarized back-
scattering enhancement factors and depolarization ratios for
Rayleigh scattering and latex spherical particles in water.

Model & ¢ X
1 1.7521 1.1201 0.5167
2 1.92 1.10 0.69
3 2.00 1.26 0.96
4 1.82 1.12 0.57
5 1.97 1.17 0.88
6 1.98 1.21 0.92
7 2.00 1.25 0.95
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copolarized and depolarized enhancement factors ¢ and
{1 for several models. For simplicity, we assumed that
the scattering medium is homogeneous and semi-infinite,
and that the linearly polarized light is incident perpendic-
ularly to the boundary of the medium. In addition to the
enhancement factors, we computed the ratio

r=h+78)/ G+, (16)
J
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which describes the depolarization of the incoherent back-
ground.

The incoherent Stokes reflection matrix of a semi-
infinite homogeneous medium may be efficiently comput-
ed by using the doubling method® or by solving numerical-
ly Ambartsumian’s’ nonlinear integral equation for the
reflection matrix

{ 2x
(—u+uo)R(u,p;u0,00) = %Z(u,¢;uo,¢o) - Z—:L du'fo de' R(u,¢.u',¢')Z (u',¢"u0,¢0)

Wio ! ' 2r ' (Y 1, - Wil ! [ 2 ' ! "
+Tn_fo du J:, d¢'Z (.0 = u',¢IR(=u', ¢ u0.00) = =3 J; du j:, d¢ j:, du
2r '
xj:) d¢”£(“,¢;ul,¢‘)l(l",¢’;_u“,¢")£("u",¢";u0,¢0) s (l-’)

where the Z axis of the coordinate system is assumed to
coincide with the inward normal to the boundary of the
semi-infinite medium, u =cosf, uo=cosy, w is the sin-
gle-scattering albedo, Z(f,f’) is the phase matrix, and
R(i,fp) with —1<wu=<0 and 0<ug=<1 is the in-
coherent reflection matrix such that

7' (=g, o) + y“(—fig, o) =R (— fig, o)
and
II ( —ﬁo,ﬁo) =WZ( —ﬁo,ﬁo)/(Suo) .

In our computations, we used the latter approach.
Specifically, the method of iterations was employed to
solve Eq. (17). For nearly conservative scattering
(1 —w<1), simple iterations converge very slow. To ac-
celerate convergence, de Rooij’s'® numerical procedure
was exploited.

Seven models of the scattering medium were considered
which are specified as follows. Model 1 is Rayleigh
scattering with the single-scattering albedo w =1. Models
2 to 7 are latex spherical particles in water.'""'> The rela-
tive refractive index is 1.194, and the wavelength is 0.476
um for models 2 and 3 and 0.387 ym for models 4 to 7.
Diameters of the particles are, respectively, 0.215, 1.091,
0.109, 0.305, 0.46, and 0.797 um. The results of the com-
putations are given in Table I.

The depolarized backscattering enhancement factor for
Rayleigh scattering was calculated earlier by Stephen and
Cwilich,' van Albada and Lagendijk,'* and Akkermans
et al.'® Stephen and Cwilich used diffusion approximation
and obtained {, =1.17. van Albada and Lagendijk and
Akkermans et al. used numerical simulation of multiple

f

scattering of polarized light and obtained ¢, =1.11 and
1.14, respectively. All these estimates are in good agree-
ment with our result {; =1.1201. Agreement between the
values {;=1.88 and y=0.42, obtained by Stephen and
Cwilich, and our values {;=1.7521 and y =0.5167 is also
satisfactory.

Our computations for models 2 to 7 are in reasonable
agreement with experimental results of van Albada, van
der Mark, and Lagendijk'' and Wolf ef al.'? In particu-
lar, depolarized enhancement factors for all the particles,
partial retention of incoherent background polarization
for small particles (models 2 and 4), and almost complete
depolarization of incoherent background by larger parti-
cles (models 3 and 5 to 7) are satisfactorily reproduced.
Experimental values of the copolarized backscattering
enhancement factor seem to be systematically lower than
the theoretically computed ones. For a discussion of pos-
sible explanations of this phenomenon, we refer the reader
to van Albada, van der Mark, and Lagendijk.'®

In summary, the model of uncorrelated discrete scatter-
ers was used to derive rigorous relation between the
ladder-term and cyclical-term contributions to the Stokes
reflection matrix in the pure backscattering direction.
The numerical solution of Chandrasekhar’s vector radi-
ative-transfer equation was used to calculate the in-
coherent part of the Stokes backscattering matrix. Copo-
larized and depolarized backscattering enhancement fac-
tors as well as a parameter describing depolarization of
the incoherent background were computed for Rayleigh
scattering and latex spherical particles in water. Numeri-
cal results for latex particles show reasonable agreement
with experimental data of van Albada, van der Mark, and
Lagendijk'' and Wolf et al. '?
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